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In this paper we study the sedimentation of several thousand circular particles in two
dimensions using the method of distributed Lagrange multipliers for solid–liquid flow.
The simulation gives rise to fingering which resembles Rayleigh–Taylor instabilities.
The waves have a well-defined wavelength and growth rate which can be modelled
as a conventional Rayleigh–Taylor instability of heavy fluid above light. The heavy
fluid is modelled as a composite solid–liquid fluid with an effective composite density
and viscosity. Surface tension cannot enter this problem and the characteristic short-
wave instability is regularized by the viscosity of the solid–liquid dispersion. The
dynamics of the Rayleigh–Taylor instability are studied using viscous potential flow,
generalizing work of Joseph, Belanger & Beavers (1999) to a rectangular domain
bounded by solid walls; an exact solution is obtained.

1. Simulation data
The data in this paper are generated by the direct numerical simulation of solid–

liquid flow using a distributed Lagrange multiplier/fictitious domain method (see
Glowinski et al. 1999, 2000a, b). The calculation is carried out on a fixed triangular
mesh on which the fluid equations are satisfied everywhere. Rigid motions of the por-
tions of fluid occupied by solids are accomplished by a strategic choice of a Lagrange
multiplier field there. The method has a certain elegance in that the rigid motion
constraint on the fluid is associated with a multiplier field in a manner analogous to
the way in which the pressure in an incompressible flow is a multiplier field associated
with the constraint on incompressibility. The details of the computation have been
given in the cited references and will not be repeated here.

The specific simulations discussed in this paper concern the sedimentation of several
thousand disks settling in a two-dimensional rectangular box filled with water of
density ρ1 = 1 g cm−3 and viscosity ν1 = 0.01 P. Disks of the same diameter are
initially arranged in three different lattices called square, hexagonal and rectangular,
as shown in figure 1. See also figures 2(a), 3(a) and 4(a). In a square lattice the gap
sizes in the horizontal and vertical directions are the same. In the hexagonal case the
gap in the horizontal direction is the same size as that between rows in the vertical
direction. But in the rectangular case the gap size in the horizontal direction is 1.2642
times that in the vertical direction.
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Figure 1. Initial lattices.

(a) t = 0 (b) t = 0.476

(c) t = 0.476

Figure 2. Snapshots of the sedimentation of 5040 (a, b, W = 8 cm) and 7560 (c, W = 12 cm)
disks of diameter 14/192 cm in two dimensions. The initial lattice is square.

The diameters of the disks are 8/192 cm, 10/192 cm, 11/192 cm, 12/192 cm,
13/192 cm, 14/192 cm, 15/192 cm, and 16/192 cm, and their density is ρp = 1.1 g cm−3.
The volume fraction of disks in the initial lattice is the ratio of the area Ap of the
disks to the total area AT of the initial lattice

φ =
Ap

AT
=
Nπd2/4

HW
(1)

where N is the total number of the disks, d is their diameter, H is the height of the
initial lattice, and W is the width of the box. In the simulation we have chosen 4, 6,
8, 10, and 12 cm as the width W and the height of the box is always 12 cm.

When the initial lattice is square, there are 60 rows of disks in most cases. In
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(a) t = 0 (b) t = 0.476

Figure 3. Snapshots of the sedimentation of 6270 disks of diameter 10/192 cm in two dimensions
(W = 10 cm). The initial lattice is hexagonal.

each row, there are 42, 63, 84, 105, and 126 disks for width 4, 6, 8, 10, and 12 cm,
respectively. To test whether more rows of disks can have a different effect, we also
tested 80 rows in a two-dimensional box of width 10 cm and height 12 cm with
diameters varying from 10/192 cm to 16/192 cm.

For the hexagonal lattices there are 6270 disks staggered at the top of the box
(see figure 3a): there are 60 rows each containing either 104 or 105 disks. The width
and the height of the box are 10 cm and 12 cm respectively. The diameter of disks
varies from 10/192 cm to 16/192 cm. In figure 3(b), the sedimentation of 6270 disks
of diameter 10/192 cm in a two-dimensional box is shown.

In rectangular lattices, there are 80 columns across the top of the box. We tested
two cases in which the number of rows is either 60 or 80 in order to probe the effect
of the number of rows. The diameter of disks varies from 10/192 cm to 16/192 cm.
Figure 4 shows snapshots of the sedimentation of 4800 and 6400 disks of diameter
either 10/192 cm or 16/192 cm in a two-dimensional box.

In all simulations the averaged particle Reynolds number at each time step is less
than 3. The maximal individual particle Reynolds number among all simulations is
about 11. In each case, simulation gives rise to fingering which resembles Rayleigh–
Taylor instabilities (figures 2, 3, and 4). The waves have a well-defined wavelength
and growth rate which we shall model as a conventional Rayleigh–Taylor instability
of heavy fluid above light. The arrangement of sedimenting particles is asymmetric:
flat on the top (most of the top in the hexagonal case) and corrugated at the bottom.
The drag on a single disk is smaller than when it is among many, so that isolated
disks at the bottom fall out of the lattice and isolated disks on the top fall into the
lattice.

2. Two-fluid model
We turn next to the two-fluid modelling of the instability of the sedimenting

suspension just described. The basic idea is to regard the particle-laden portion
of the sedimenting suspension (shown in figures 2, 3, and 4) as an effective fluid
with an effective viscosity η2 and an effective density ρ2 = (1 − φ)ρ1 + φρp and, of
course, zero surface tension γ; then we have two fluids: an effective one above and
water below. The dynamics of this two-fluid problem can be analysed using viscous
potential flow (Joseph & Liao 1994). Joseph, Belanger & Beavers (1999) showed that
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(a) t = 0 (b) t = 0.476

(d) t = 0.476(c) t = 0.476

Figure 4. Snapshots of the sedimentation of 4800 (a, b) and 6400 (c, d) disks in two dimensions
(W = 8 cm). The diameter of disks in (a), (b) and (c) is 10/192 cm and the diameter of disks in
(d) is 16/192 cm. The initial lattice is rectangular.

the wavelengths and the growth rates obtained with viscous potential flow differ from
those obtained from a fully viscous analysis by only a few percent. The success of
the potential flow analysis arises from the fact that viscosity mainly acts through the
viscous part of the normal stress, acting in our problem through the effective viscosity
of the solid–liquid suspension. Surface tension cannot enter into this problem so that
the effective viscosity is the only mechanism which regularizes an otherwise ill-posed
problem in which the growth rate increases like 1/

√
λ, tending to infinity with ever

shorter waves (Joseph & Saut 1990).
The analysis of Rayleigh–Taylor instability using viscous potential flow can be

carried out in an infinitely extended domain using the method of normal modes with
disturbance proportional to

entei(kxx+kyy)e±qz (2)
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Figure 5. Initial configuration.

where, for viscous potential flow

q = k =
√
k2
x + k2

y (3)

where z increases in the opposite direction to gravity g = 980.6635 cm s−2 and the
sign ±k is chosen so that the amplitude decays at infinity. The analysis leads to the
following dispersion relation (equation (25) of Joseph et al. 1999)

ρ2 + ρ1 =
k

n2
(ρ2 − ρ1)g − γk3

n2
− 2k2

n
(η2 + η1). (4)

Equation (4) depends on kx and ky only through k in (3); hence (4) is valid in both
two and three dimensions and it applies to the planar problem under discussion.

To get k which maximizes n (with zero surface tension, γ = 0), we differentiate (4)
with respect to k, set dn/dk = 0 and find that

k =
(ρ2 − ρ1)g

4n(η2 + η1)
. (5)

Substituting (5) into (4), we obtain the growth rate

n3 =
(ρ2 − ρ1)

2g2

8(η2 + η1)(ρ2 + ρ1)
, (6)

and the associated wavelength is given by

k3 =
(ρ2

2 − ρ2
1)g

8(η2 + η1)2
. (7)

We also carry out a similar analysis in the rectangular domain of the computation
as shown in figure 5, in which we can construct the viscous potential flow. Let W be
the width of the domain, and H2 the height of the fluid–solid mixture above water of
height H1. Then the velocity obtained from a potential ψ is u = ∇ψ. Let z = ζ(x, t)
be the interface. The normal stress balance applied on z = 0 may be reduced, using
Bernoulli’s equation, to

−γ ∂
2ζ

∂x2
=

[∣∣∣∣ρ∂ψ∂t
∣∣∣∣]+ [|ρ|]gζ + 2

[∣∣∣∣ρ∂2ψ

∂z2

∣∣∣∣] . (8)
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Figure 6. Amplitude vs. time for the simulation of instability of 6400 disks shown in figure 4(c).
The dashed line is obtained by curve fitting.

The kinetic equation of motion of the perturbated free surface ω = ∂ζ/∂t implies
that

∂ζ

∂t
=
∂ψ1

∂z
=
∂ψ2

∂z
. (9)

The normal derivative of the potential ψ(x, z, t) must vanish on the solid wall,
∂ψ/∂x = 0 on x = 0 and x = W , ∂ψ1/∂z = 0 on z = −H1(< 0), and ∂ψ2/∂z = 0
on z = H2(> 0). The normal mode solutions corresponding to (8) on the bounded
domain are

ψ1 = A1e
nt cos kx cosh k(z +H1), for z < 0,

ψ2 = A2e
nt cos kx cosh k(z −H2), for z > 0,

ζ = A3e
nt cos kx

 (10)

where

k = (m+ 1)π/W. (11)

It is convenient to treat k as a continuous variable.
After inserting (10) into (8) and (9) we find the dispersion relation

(ρ2−ρ1)gk−γk3 = n2

(
ρ1

tanh kH1

+
ρ2

tanh kH2

)
+2nk2

(
η1

tanh kH1

+
η2

tanh kH2

)
. (12)

The analysis of (12) proceeds along conventional lines: we find the k which maximizes
n; this k is such that kH1 and kH2 are never smaller than 29 in those simulation cases
and the two tanh in (12) are almost equal to one giving rise to (4). The comparison
of computation and the model may then proceed on the basis of (4).

3. Comparison of the two-fluid model and simulation
The ‘effective’ viscosity η2 of the solid–liquid dispersion is unknown and may

be defined by our stability analysis using the following procedure. We first select
the associated wavelength k0 = 2π/λ where λ is the wavelength determined by the
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Figure 7. The effective viscosity η2 for which n(K0, η2) is maximum: the width of the box is W
varying from 4 cm to 12 cm, and height of the box is 12 cm, the initial lattice is square, the number
of rows is 60 (except the case W = 10(80) in which there are 80 rows), the number of columns
varies from 42 to 126, and the diameter of disks varies from 10/192 cm to 16/192 cm.
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Figure 8. The comparison of the effective viscosity η2 (for which n(K0, η2) is maximum): the width
of the box is W = 10 cm, the height of the box is 12 cm, the initial lattice is either square (W = 10)
or hexagonal (W = 10(h) ), the number of rows is 60, the number of columns is 105, and the
diameter of the disks varies from 10/192 cm to 16/192 cm.

numerical experiment. From (7) we can obtain the value of the effective viscosity η2

and then the associated growth rate by (6). The determination of a growth rate from
numerical simulation is carried out by fitting the growth in the wave amplitude to
bent. The wave amplitude is the height of the wave crest defined by a line through
the centres of disks in the bottom row. The time step is 0.001 s and the first record of
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Figure 9. The comparison of the effective viscosity η2 (for which n(K0, η2) is maximum): the width
of the box is W = 8 cm, the height of the box is 12 cm, the initial lattice is either square (W = 8)
or rectangular (W = 8(r)), the number of rows in the square case is 60, those in the rectangular
case are 60 and 80, the number of columns is 80; the diameter of the disks varies from 10/192 cm
to 16/192 cm. Cases in which there 60 rows (resp., 80 rows) and 80 columns of disks are marked
by O (resp., ‘×’). The ‘*’ is a case in which there are 100 rows and 80 columns of disks of diameter
16/192 cm.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.74 1.0, 2.0π 0.14409 6.012 9.201
11/192 28.69 0.8, 2.5π 0.11135 7.380 10.237
12/192 34.10 0.667, 3.0π 0.09078 8.801 11.185
13/192 39.97 0.615, 3.25π 0.08690 9.904 12.716
14/192 46.29 0.571, 3.5π 0.08346 11.044 14.645

Table 1. The dimension of the box is (W,L) = (4, 12) and H2 varies from 5.6541 to 5.6831. The
number of disks is 42× 60 = 2520 (60 rows). The averaged particle Reynolds number at the final
time step varies from 2.226 to 1.692. Initial lattice is square.

distortion of the line of centres through the bottom row of disks is t = 0.026. Values
of the amplitude used in the curve fitting are taken at 0.025 s intervals from t = 0.026
to t = 0.476. In figure 6, a set of amplitudes and the curve are shown for the case in
figure 4(c).

This procedure for determining the effective viscosity of sedimenting disks from a
stability calculation has been implemented for a large number of cases and the results
obtained are presented in tables 1–12 and figures 7–9. The data have been sorted
by the geometry of the initial lattice of particles: square, hexagonal or rectangular
(figure 1). In each of these three categories we vary the width and height of the initial
lattice by adding or subtracting rows and columns of disks. Each table was indexed
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Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.66 0.600, 3.33π 0.06149 7.748 9.941
11/192 28.60 0.545, 3.67π 0.05821 8.924 10.451
12/192 34.01 0.500, 4.00π 0.05537 10.150 11.402
13/192 39.88 0.4615, 4.33π 0.05287 11.423 12.565
14/192 46.21 0.4615, 4.33π 0.05778 12.278 14.512
15/192 53.00 0.429, 4.67π 0.05506 13.623 14.536
16/192 60.25 0.4138, 4.83π 0.05593 14.756 13.917

Table 2. The dimension of the box is (W,L) = (6, 12) and H2 varies from 5.6738 to 5.7031. The
number of disks is 63× 60 = 3780 (60 rows). The averaged particle Reynolds number at the final
time step varies from 2.248 to 1.296. Initial lattice is square.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.61 0.500, 4.00π 0.04433 8.480 10.056
11/192 28.56 0.471, 4.25π 0.04462 9.600 10.712
12/192 33.96 0.444, 4.50π 0.04474 10.758 11.377
13/192 39.83 0.432, 4.625π 0.04698 11.795 12.503
14/192 46.17 0.421, 4.75π 0.04903 12.849 14.377
15/192 52.96 0.41025, 4.875π 0.05091 13.919 13.849
16/192 60.22 0.41025, 4.875π 0.05507 14.816 15.039

Table 3. The dimension of the box is (W,L) = (8, 12) and H2 varies from 5.6838 to 5.7059. The
number of disks is 84× 60 = 5040 (60 rows). The averaged particle Reynolds number at the final
time step varies from 2.261 to 1.278. Initial lattice is square.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.59 0.455, 4.4π 0.03707 8.889 9.979
11/192 28.53 0.435, 4.6π 0.03848 9.983 10.544
12/192 33.93 0.4167, 4.8π 0.03967 11.107 11.313
13/192 39.81 0.4167, 4.8π 0.04388 12.012 12.283
14/192 46.14 0.4000, 5.0π 0.04464 13.179 13.795
15/192 52.94 0.39215, 5.1π 0.04691 14.233 14.366
16/192 60.20 0.37736, 5.3π 0.04739 15.446 14.081

Table 4. The dimension of the box is (W,L) = (10, 12) and H2 varies from 5.6899 to 5.7075. The
number of disks is 105× 60 = 6300 (60 rows). The averaged particle Reynolds number at the final
time step varies from 2.268 to 1.276. Initial lattice is square.

by the volume fraction of disks; different volume fractions were created basically by
changing the size of the particles.

The procedure we have adopted requires that we assess the success of the modelling
by comparing the growth n(K0, η2) with growth rate from simulation. The largest
discrepancy (table 1) is of order 30% but the error is less than 10% in the most of
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Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.57 0.429, 4.667π 0.03308 9.151 10.022
11/192 28.51 0.414, 4.833π 0.03500 10.230 10.570
12/192 33.92 0.400, 5.000π 0.03671 11.333 11.308
13/192 39.79 0.400, 5.000π 0.04066 12.257 12.308
14/192 46.12 0.387, 5.167π 0.04201 13.394 14.250

Table 5. The dimension of the box is (W,L) = (12, 12) and H2 varies from 5.6939 to 5.7087. The
number of disks is 126× 60 = 7560 (60 rows). The averaged particle Reynolds number at the final
time step varies from 2.272 to 1.695. Initial lattice is square.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.59 0.47629, 4.2π 0.04047 8.685 9.788
11/192 28.53 0.45454, 4.4π 0.04183 9.763 10.435
12/192 33.93 0.43478, 4.6π 0.04295 10.873 11.255
13/192 39.81 0.41667, 4.8π 0.04388 12.012 12.259
14/192 46.14 0.40816, 5.0π 0.04464 13.179 13.527
15/192 52.94 0.38462, 5.2π 0.04528 14.372 14.080
16/192 60.20 0.37037, 5.4π 0.04580 15.591 13.857

Table 6. The dimension of the box is (W,L) = (10, 12) and H2 varies from 7.5865 to 7.6101. The
number of disks is 105× 80 = 8400 (80 rows). The averaged particle Reynolds number at the final
time step varies from 2.268 to 1.264. Initial lattice is square.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.48 0.476, 4.20π 0.04035 8.664 8.870
11/192 28.39 0.455, 4.40π 0.04170 9.740 9.257
12/192 33.77 0.434, 4.60π 0.04282 10.848 9.722
13/192 39.62 0.417, 4.80π 0.04374 11.984 10.513
14/192 45.92 0.400, 5.00π 0.04451 13.148 12.226

Table 7. The dimension of the box is (W,L) = (10, 12) and H2 varies from 5.6899 to 5.7017. The
number of disks is 6270. The averaged particle Reynolds number at the final time step varies from
2.259 to 2.089. Initial lattice is hexagonal.

cases. In general the errors are greater for small volume fractions and the largest errors
occur at small volume fraction in the narrowest geometry (W = 4 cm in table 1).

The data for the square lattice in tables 1–6 can be compared with the hexagonal
lattice in table 7 and in the rectangular lattice in tables 8–10. The initial lattice of
disks is not modelled and it must have an effect. Obviously if most of the disks were in
a ball, it would be necessary at least to prescribe the distribution of volume fraction
at the initial instant. Results shown in table 4 (square) and table 7 (hexagonal)
under otherwise identical conditions do not reveal any important differences; the
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Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.80 1.14286, 1.75π 0.17849 5.630 8.632
11/192 28.44 1.0, 2.0π 0.15883 6.572 9.723
12/192 33.42 0.8889, 2.25π 0.14358 7.548 10.679
13/192 38.74 0.8421, 2.375π 0.14268 8.338 13.034
14/192 44.39 0.7619, 2.625π 0.13084 9.370 13.508
15/192 50.35 0.6956, 2.875π 0.12105 10.428 15.038
16/192 56.61 0.64, 3.125π 0.11281 11.511 14.518

Table 8. The dimension of the box is (W,L) = (8, 12) and H2 varies from 5.3711 to 5.7812. The
number of disks is 80× 60 = 4800 (60 rows). The averaged particle Reynolds number at the final
time step varies from 2.591 to 1.552. Initial lattice is rectangular.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.80% 1.14286, 1.75π 0.17850 5.630 8.298
11/192 28.44% 1.0, 2.0π 0.15883 6.572 9.591
12/192 33.42% 0.8889, 2.25π 0.14358 7.548 10.553
13/192 38.74% 0.8421, 2.375π 0.14268 8.338 12.785
14/192 44.39% 0.7619, 2.625π 0.13084 9.370 13.136
15/192 50.35% 0.6956, 2.875π 0.12105 10.428 14.253
16/192 56.61% 0.64, 3.125π 0.11281 11.511 13.900

Table 9. The dimension of the box is (W,L) = (8, 12) and H2 varies from 7.1614 to 7.7083. The
number of disks is 80× 80 = 6400 (80 rows). The averaged particle Reynolds number at the final
time step varies from 2.593 to 1.523. Initial lattice is rectangular.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

16/192 56.59 0.6061, 3.3π 0.10315 11.827 13.959

Table 10. The dimension of the box is (W,L) = (10, 12) and H2 is 7.7109. The number of disks is
100× 80 = 8000 (80 rows). The averaged particle Reynolds number at the final time step is 0.857.
Initial lattice is rectangular.

columns giving the effective viscosity for these two cases match closely and can be
seen graphically in figure 8. However, an examination of the details of the instability
in the region near the wall shows a dramatic difference between the square (figure 2),
the hexagonal (figure 3) and the rectangular (figure 4). The staggered disks in the
hexagonal case are such that only every other row of disks is near the wall, so the
wall region has a lower solid fraction and is ‘weaker’ there in such a way that the
whole bed sinks even as Rayleigh–Taylor waves develop. It is clear that the major
effects of the wall are confined to a wall layer.

On adding more rows to some existing cases, the results shown in tables 4 and
6 (square) and tables 8 and 9 (rectangular) again do not reveal any important
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(b) t = 0.476(a) t = 0.476

Figure 10. Snapshots of the sedimentation of 9628 disks (left) and 11340 disks (right) of diameter
8/192 cm in two dimensions (W = 8 cm). The initial lattice is square.

Wavelength Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

8/192 28.77 0.3478, 5.75π 0.02484 11.207 11.914
8/192 33.92 0.4, 5π 0.03671 11.333 12.736

Table 11. The dimension of the box is (W,L) = (8, 12) and H2 varies from 5.6988 to 5.7047. The
numbers of disks are 116 × 83 = 9628 (83 rows) and 126 × 90 = 11340 (90 rows). The averaged
particle Reynolds number at the final time step varies from 1.031 to 1.536. Initial lattice is square.

differences; the columns giving the effective viscosity for these two cases match
closely as can be seen graphically in figures 7 and 9.

Since rectangular lattices are clearly more anisotropic than square ones, much
greater differences in the effective viscosity when calculated at the same volume
fraction in simulations starting from square and rectangular lattices of disks are
evident in comparisons of tables 3 and 8 and summarized in figure 9.

To test whether different size particles with the same volume fraction would give
rise to the same result, we used smaller disks of diameter 8/192 cm in simulations
with the square lattice. The results are shown in figure 10 and table 11. Comparing
the results in table 3 with the same dimension and about the same volume fraction
and H2, again we found that the effective viscosity is not uniquely determined by the
volume fraction.

We also considered a disordered initial lattice which was generated from a square
lattice by moving disks in the horizontal and vertical directions randomly within a
given distance, except those disks in the bottom row, which were only allowed to move
in the horizontal direction. This initial configuration is not really a random one. (To
generate a random initial configuration with a sharp and flat interface, we have to
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(b) t = 0.276(a) t = 0

Figure 11. Snapshots of the sedimentation of 5040 disks of diameter 10/192 cm in two dimensions
(W = 8 cm). The initial lattice is disordered.

Wavelength† Effective
Solid and associated viscosity η2 for Growth

Disk fraction wavenumber which n(K0, η2) rate from
diameter (%) K0 (in cm−1) is maximum n(K0, η2) simulation

10/192 23.61 0.4444, 4.5π 0.03553 8.994 9.730

†The wavelength is an averaged quantity in this case due to the irregular shape of waves.

Table 12. The dimension of the box is (W,L) = (8, 12) and H2 is 5.6838. The number of disks
is 5040. The averaged particle Reynolds number at the final time step is 3.022. Initial lattice is
disordered.

have many much smaller particles. This is beyond the capability of our code for now.)
The results are shown in figure 11 and table 12. We still can find the development of
waves in figure 11. We believe that the distribution of disks in these rows just above
the bottom row is a perturbation which has a strong influence to the development
of the interface. The viscosity is consistent with those of square and hexagonal cases
with greater width (greater than or equal to 8 cm) and about the same solid volume
fraction.

4. Discussion and conclusions
The direct two-dimensional simulation of the sedimentation of a close packed array

of circular particles into a rectangular box filled with water gives rise to fingers of
particles with a wave structure which resembles that which arises from Rayleigh–
Taylor instability of heavy fluid above light. The wavelength and growth rate of
falling particles can be compared with a two-fluid model of the Rayleigh–Taylor
instability using viscous potential flow. The particle–fluid mixture is modelled as a
heavier than water fluid with an effective density and viscosity. The effective density
function of the solid fraction is given by the formula ρ(φ) = ρpφ + ρf(1 − φ) which
can be justified by ensemble and other kinds of averaging. Interfacial tension cannot
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enter at the nominal water–mixture interface. The two-fluid model used here to study
the Rayleigh–Taylor instability then is fixed when the hindered settling function f(φ),
which determines the effective viscosity η(φ) = ηwf(φ) where ηw is the viscosity of
water, is known. Many formulas have been proposed (see, for example, figure 3 in
Poletto & Joseph 1995) and none are perfect.

The effective viscosity of a suspension is a way of describing the flow resistance
due to internal friction in a slurry. The resistance can depend on factors like wall
proximity, particle size, particle distribution and other factors even when the solid
fraction is fixed. Clumped particles fall faster than well-mixed particles, particles near
walls fall more slowly. The flow type is also a factor: the effective viscosities of
settling, shear and extensional flows are in general different even when the volume
fraction is fixed. It is necessary to think of an effective viscosity of a dispersion under
well-specified conditions; one suit will not fit all.

In our study we focus our attention on the effective viscosity functions of the volume
fraction which gives rise to arrangements between computational experiments and
two-fluid theory in a restricted situation; we choose the viscosity function to obtain
the same number of waves from theory and numerical experiments. The theory may
then be used to predict the growth rate and this theoretical value can be checked
against numerical experiments. Theoretical and experimental values are listed in last
two columns of tables 1–12 and the agreements are satisfactory.

We have already argued that effective property models live only in well-prescribed
situations. This is a negative factor for modelling because besides the model we must
specify the situations in which such a model exists. In this paper we determined
viscosity function

η(φ;W,H1, H2, d, I)

where different functions of φ are obtained when the bed geometry W , H1 and H2

(figure 5), the particle size d and the initial lattice I (figure 1) are varied.
The asymptotic case of a semi-infinite bed in which W , H1 and H2 tend to infinity

is of specific interest since in this case there is no length to compare with the circle
diameter d; the instability must be independent of d but could depend on the initial
lattice I of particles. This asymptotic case might be the most universal, the one closest
to our two-fluid model on the semi-infinite domain leading to (4).

The periodic box of length W used in our exact solution (10) can be repeatedly
extended to infinity, but the ratio d/W then is a solution parameter. The asymptotic
limit of a semi-infinite domain mentioned above would be achieved when

d/W → 0.

Unfortunately, we cannot compute when there are very many small particles d → 0
at finite φ or W → ∞ at finite φ. Our data show that the observed wavelength in
the numerical simulation is decreasing function of d/W when the initial arrangement
of particles is fixed (see tables 1–6 and 8–11). The data suggest that there is a
limiting value, depending on the initial arrangement, also for the two-fluid model as
is indicated by the convergence of viscosity function exhibited in figure 7.

Figure 7 shows a very strong effect of the walls; this arises as a consequence of
the variation of d/W for a fixed d and by a perhaps serious mismatch of theory
and numerical experiment which is amplified by reducing W . Nearby walls have a
big effect when the no-slip condition at the sidewalls is enforced, as in the numerical
simulation. The no-slip condition is not enforced in the viscous potential flow theory;
the retardation due to the walls is apparently realized in the model by a higher value
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of effective viscosity. This value is larger when the solids fraction is small because the
shielding from the wall by other particles works less well when there are few than
when there are many particles. The viscous potential flow model, which apparently
works well as a fully viscous two-fluid model for Rayleigh–Taylor instability, may not
be good approximation when the walls are close. A fully viscous two-fluid model of
Rayleigh–Taylor instability would probably give better results.

The initial lattice of particles is an important parameter in our effective property
model of Rayleigh–Taylor instability. Rather large differences in the effective viscosity
are demonstrated between square and rectangular lattices as exhibited in figure 9.
Figures 4(b) and 4(c) exhibit an increase of local solid fraction near the interface.
However, when we increased the diameter of the disks from 10/192 cm to 16/192 cm,
this increase of local solid fraction is reduced dramatically (see figure 4d). An effective
property model might be expected to work best in a statistically homogeneous
medium. The square and hexagonal arrangements are periodic in x and y with the
same period but the rectangular arrangement is doubly periodic.

The overall conclusion of this study is that effective two-fluid models can be made
to work in particulate flow but such theories require a prior prescription of the
domain of arrangements of particles to which the theory might apply. The greatest
predictive value of such effective theories is for statistically homogeneous media.
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